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Abstract--Flow variation is studied analytically in rocks with layers of varied competence and varied orientation 
with respect to constant bulk flow fields of given kinematic vorticity (0 -< Wk --< 1). The results explicitly 
demonstrate that flow varies significantly from layer to layer and with time in any individual layer even though the 
bulk flow is constant. Any flow regime can occur and the instantaneous stretching axes (ISA) spin all the time. 
Reverse sense of non-coaxiality can occur in the same layer at different times and in different layers at the same 
time. This study further reveals the significance of heterogeneity and non-steadiness in natural flows. The 
assumption of a time-independent flow history for natural deformation is highly unrealistic. The spinning of the 
instantaneous stretching axes (ISA) and the variation of flow regimes have bearings on the progressive 
development of fabrics and structures such as folded boudins, refolded folds in shear zones and double rotation of 
porphyroclasts that are often interpreted as being due to multi-deformational events. 

INTRODUCTION 

IN CONTRAST to the abundant studies of natural finite 
strain, studies on the deformation path by which the 
final deformation is achieved are rare. For example, the 
variation of deformation across competence contrast 
boundaries has received the attention of geologists for 
over a century, and many theoretical and experimental 
studies have been done in the field of finite strain (e.g. 
Treagus 1983, 1988, 1993 and references therein, Ram- 
say 1982, Ramsay & Huber 1983) and more recently on 
the refraction of stress and strain rate across competence 
boundaries (Treagus 1993). But, as far as I am aware, 
Ishii's (1992) work is the only theoretical investigation of 
deformation path in this connection. Time-independent 
flow histories are often assumed implicitly or explicitly 
to fill the gap between the initial (undeformed) state and 
the final (deformed) state. When the structure or fabric 
geometry presents some degree of obliquity, a non- 
coaxial (simple shear or sub-simple shear flow) history is 
assumed, otherwise a coaxial (pure shear) flow history is 
assumed. However, the real deformation path of rocks 
may be far more complex (see e.g. Lister & Williams 
1979, 1983, Williams & Schoneveld 1981, Celma 1982, 
Choukroune et al. 1987). The development of geological 
structures and fabrics is intimately related to the defor- 
mation path. In order to increase our understanding of 
the processes involved in natural deformations, possible 
flow histories and associated deformation paths need to 
be determined. 

In this paper, I investigate analytically how flow varies 
in layered rocks as they undergo constant bulk flows of 
different kinematic vorticity number (0 ~ Wk ~< 1). It 
will be shown that even if the bulk flows are constant, 
flow varies both from layer to layer (heterogeneity) and 
in the same layer with time (non-steadiness). Any flow 
regime, including super-simple shear, can occur. Unlike 

Flow is described by the velocity (v) of all particles in a 
medium. The velocity can be expressed (Ottino 1989, 
pp. 28-30) in terms of either particle (X)--Lagrangian 
or material velocity--or spatial location (x)--Eulerian 
or spatial velocity, i.e.: 

v = v(X,t) Lagrangian or material 

v = v(x,t) Eulerian or spatial. (1) 

From the velocity, three quantities are derived, 
namely gradient, divergence and curl. 

The Eulerian gradient of v is often called the instan- 
taneous velocity gradient tensor (L = grad v) whose 
components are: 

Lq = ~ (i,j = 1, 2, 3). (2) 

The divergence of v is commonly called the rate of 

previous studies, the rheology of rock is not assumed 
and perfect adherence between layers is not required. 

Since flow terminology and concepts are referred to 
throughout the paper, a synoptic summary of flow 
theory is first given. This is followed by a consideration 
of the description of competence contrast between 
layers. The theoretical results of flow variation in layers 
of different competence is then presented and the math- 
ematical derivation of the instantaneous velocity gradi- 
ent tensors is given in the Appendix. The paper con- 
cludes with a discussion on the geological implications of 
this study. 

SYNOPTIC SUMMARY OF FLOW RELD 
THEORY 

Flow classification 
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irrotolional (Wk= O) 
rotat ional (¢Vk + O) ,•[ (Truesdell 1954) 

• pure shear (W~= O) 
coaxial 

O~t in ten~s E non-coaxialofWk " ( Means et al,(W'~ O)f1980) 

L super-sirnple shear* ( W'k> t ) 

sub-simple shear* (W'k< 1 ) 
simple shear (W'k= 1) 

* ( ~ Paor 1983) 

( Passchier 1991 ) 
~ 5 ~  I divergent (A k> 0) 

isochoric (Ak= 0) 
convergent (A ~< 0) 

Fig. 1. Flow classification based on different parameters. See text for details. 

dilation or rate of volume change (A) (see Sedov 1971, p. 
124): 

1 dAV Or1 Ov~ Or3 
A = d i v v -  - - -  + ~ + - - = t r [ L ] ,  (3) 

AV dt Oxl Ox2 ~x3 

where AV is an infinitesimal volume at a point. For 
isochoric flow A ~ 0. 

The curl of v is the instantaneous vorticity vector: 

Oxl l ~  + k  . x v .  (4) 

On the basis of these three quantities, many para- 
meters have been defined as criteria to classify flow (e.g. 
Astarita 1976, Tanner  1976), among which are the 
following. 

Truesdell's kinematic vorticity number (Wk)--measure 
of  instantaneous rotation. It was defined as (Truesdell 
1954): 

w~ = w -  {2(s, ~ + s~ + ~ ) F  ''2, (5) 

where Wis the magnitude of vorticity vector and sl, s2, s3 
(sl -> s2 --- s3) are three eigenvalues of the stretching 
tensor D, whose components are Dij = ½(Lij + Lji) 
(Truesdell 1954). If Wk = 0, the flow is irrotational, 
otherwise it is rotational. 

Means' kinematic vorticity number (W'k)--measure of  
instantaneous non-coaxiality. Since the vorticity differs 
in different frames, Wk is frame-dependent.  However 
the vorticity measured in a selected external frame can 
be partitioned into internal or shear-induced vorticity 
(Wz) and external vorticity (WE), or spin (Means et al. 
1980, Lister & Williams 1983). A frame-independent 

internal kinematic vorticity number W'k was defined by 
Means et al. (1980) as a measure of the instantaneous 
non-coaxiality: 

w~ = w , .  {2(s~ + s~ + s~)} - ~ .  (6) 

Passchier's kinematic dilatancy number (Ak)--measure 
of  instantaneous dilatancy. It was defined as (Passehier 
1991a): 

Ak = Z ,2(s~ + s~ + sb}  - 'p- (7) 

Figure 1 shows flow classification based on these 
parameters.  A flow can be well characterized by its 
attributive parameters. For example, a flow with Wk = 
0, W~ < 1 and Ak > 0 may be called 'irrotational 
divergent sub-simple shear'. 

Eigenvectors and particle paths o f  steady-state isochoric 
flow 

Particle paths of flow regimes for steady-state iso- 
choric flows have been studied by Ramberg (1975) and 
Goguel (1979). The Mohr circle construction has been 
used as a powerful means to describe flow by Lister & 
Williams (1983), Bobyarchick (1986), Passchier 
(1988a.b. 1991a) and has recently been reviewed by 
Simpson & De Paor (1993). Figure 2 summarizes all flow 
regimes. For super-simple shear (Wk > 1) (De Paor 
1983), the particle paths form loops. In such a flow, all 
material lines rotate in the same sense. For 0 --< W k < 1, 
the particle paths are open-ended with two flow eigen- 
vectors (A1, A2) (Gogue11979, Bobyarchick 1986, Pass- 
chier 1986.1987a.b, 1988a, 1990). Material lines parallel 
to the eigenvectors do not rotate. Material lines lying 
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Fig. 2. Steady-state isochoric flow fields and their representation by Mohr circles. A1, A2: flow eigenvectors; el, ~2: 
extensional and contractional instantaneous stretching axes (ISA); B 1, B2: bisectors of forward rotation (blank) and 
backward rotation (dotted) sectors; a: angle between Al and A2; ~: angle between ~1 and A1. Wk is related to a and ~ by the 

relationship Wk = COS a = sin(2~). See text for details. 

within the obtuse and acute sectors will rotate in 
opposite senses toward the extensional eigenvector 
(A1). Hereaf te r  those rotating in the same sense as the 
bulk non-coaxiality are referred to as forward rotation 
(FR) and those rotating in the opposite sense backward 
rotation (BR).  The maximum angular velocities are 
reached at two bisectors of the obtuse and acute sectors 
(B1, B2) (Ghosh & Ramberg  1976, Bobyarchick 1986, 
Passchier 1987a,b). These rotational behaviors of 
material  lines have been used in the interpretation of 
kinematic indicators (Hanmer  & Passchier 1991, Simp- 
son & De  Paor  1993). The cosine of the angle a between 
AI and A2 equals the kinematic vorticity of the flow 
(Bobyarchick 1986)• For  pure shear flow, A 1 and A 2 are 
perpendicular;  for simple shear,  they coincide and for a 
sub-simple shear 0 ° < a < 90 °. The instantaneous 
stretching axes (ISA) are at 45 ° with respect to B 1 and 
B 2. The extensional ISA makes  an angle ~ with respect 

to A 1 and sin (2~) equals the kinematic vorticity number  
(Weijermars 1991). These relations can be used to 
construct a flow field when flow parameters  are known. 

COMPETENCE CONTRAST BETWEEN LAYERS 

When rocks undergo deformation,  the interaction 
between different domains due to their anisotropic and 
rheological differences induces domainal and time- 
dependent  flow (Jiang 1994)• The term competence 
contrast has been used qualitatively to describe the 
variation of deformation features as a result of such 
differential flow histories (e.g. Ramsay  1982, Ramsay & 
Huber  1983, p. 12, Twiss & Moores  1992, p. 239). It  is 
evident that a more  quantitative t reatment  of com- 
petence contrast lies in the different constitutive 
equations that have governed the flow in different rock 
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Fig. 3. Layers of varied competence at an arbitrary orientation with respect to a steady-state isochoric bulk flow with a pure 
shear component  and simple shear component  of i and ~), respectively, (a) The  q~-configuration; abcd is a square;  the 
orientation of the extensional ISA of the flow in a given layer is designated by 0. (b) After  an incremental deformation of 
(a), ad becomes a 'd ' ,  which is a 'broken zigzag' due to the competence difference between layers and slip along layer 
boundaries. The displacement rate of ab to cd is ~REdi. (c) Bulk flow field. (d) Mohr circle of the bulk flow. The resolved 

shear strain rate parallel to the layer ab is ~;R = ~b~,b -- cbh~.. See text for details. 

domains. Some authors have tried to relate the concept 
of competence to parameters describing mechanical 
properties of rocks such as strength (e.g. Hobbs et al. 
1976, Means 1990) or viscosity (Cobbold 1983, Treagus 
1983, 1988, Ishii 1992). This is viable only when different 
domains are of the same rheology (elastic, linear vis- 
cous, power-law with the same stress exponent, etc.) so 
that constitutive equation differences can be simplified 
to differences in common mechanical parameters like 
Young's modulus, viscosity and power-law coefficients. 
To illustrate this, Tullis et al. (1991) have shown that 
difference in the stress exponent between the flow laws 
of plagioclase and pyroxene results in their complex 
relative competence. At high strain rate and low tem- 
perature pyroxene is more competent, whereas at low 
strain rate and high temperature plagioclase is more 
competent. 

For layered rocks, it is observed that different layers 
often exhibit approximately the same layer-parallel 
shortening or extension, suggesting approximately the 
same layer-parallel stretching rates during deformation. 
What differ between layers are usually their layer- 
parallel shear strains, indicating different layer-parallel 
shear strain rates (see Price & Cosgrove 1990, pp. 453- 
454, Treagus & Sokoutis 1992). To the first approxi- 
mation, this can be used as a constraint to make the 
competence contrast between layers relatively easy to 
deal with. From a phenomenological point of view, 
each layer is given a competence factor N to quantify its 
competence in this paper. This is defined as 
(Fig. 3): 

N = layer-parallel shear strain rate of the ith layer _ ~)i 
resolved shear strain rate parallel to the layer ))R 

(8) 

If 0 ~ N < l,  the layer is accommodating less shear 
strain rate than what is resolved and it is relatively 
competent. The smaller N, the more competent the 
layer. If l <- N < - : c  the layer is accommodating the 
same or more shear strain rate than what is resolved and 
it is relatively incompetent. The larger N, the more 
incompetent the layer. As illustrated in Fig. 3. the 
resolved shear strain rate parallel to the layer (ab) is 9)R, 
which is easily obtained from the Mohr circle construc- 
tion (Fig. 3d). The layer-parallel shear strain rates of 
different layers are ~),(i - 1, 2. 3 . . . .  ). Using d i t o  

denote the instantaneous thickness of layers, the relative 
displacement rate between ab and cd due to bulk flow is 
~/R~d i. This is accommodated by two components. One 
is the internal shear straining of the layers, which con- 
tributes a displacement rate of E~'fli, and the other is the 
discontinuous slips on layer boundaries, which contrib- 
ute a total displacement rate of £v, (vi denotes the slip 
rates). Therefore we have: 

~R y di= ~_ vi + ~ ~idi • 

Incorporating (8) and after arrangement, we have: 

Z_ .  
- 1  

/_..... 
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where Ai is the fractional thickness of the ith layer. 
Equation (9) specifies the interaction between layers: to 
achieve a given bulk flow, layer-parallel shear strain 
rates in different layers and discontinuous slip along 
competence boundaries must be complementary. When 
the bulk flow is pure shear and the layers happen to be 
parallel to one axis of principal strain rate, the resolved 
shear strain rate and the layer-parallel shear strain rate 
are both 0, which makes the competence factor indeter- 
minate. This can be explained by the lack of interaction 
between layers--each layer is deforming the same way 
as if no other layers exist. 

The competence contrast between the ith layer and 
the jth layer can be described by the ratio of their 
competence factors: 

Ni _ Y.i. (10) 
Nj rj 

Since the shear stress across a competence boundary, 
irrespective of adherence, must be the same, in the case 
of Newtonian rheology with viscosity r/, we have: 

Ni _ Yi _ ~ .  (11) 
Nj h 

If the above ratio is time-independent, we have: 

_ f ~,dt _ ri (12) 
r h f~,jdt yj" 

This is what has been called the rule of strain refraction 
(Cobbold 1983, Treagus 1983, 1988, Kanagawa 1993). 

If the competence contrast as defined in equation (10) 
is constant during a deformation, despite the rheology of 
the rock, we have: 

Ni _ Yi. (13) 
Nj r; 

This shows that although N may be time-dependent, 
the layer-parallel finite shear strain ratio can be viewed 
as the average competence contrast during a defor- 
mation. 

FLOW VARIATION IN LAYERS OF VARIED N: 
RESULTS 

A1 Xl 

B2 

Fig. 4. The orientations (0) of the ISA in layers are the same as the 
orientations of the bulk ISA (0 = ~), irrespective of their N, when 
layers are parallel to B1, B2, and two bulk ISA. If layers are in the 
dotted sectors, for incompetent  layers 0 > ~, while for competent  

layers, 0 < ~. The situation is vice versa in the blank sectors. 

of the layer (~) is shown in Figs. 4 and 5. The ISA spin 
within the sector of ~ - 6 -< 0 - ~ + 6. The deviation 6 is 
solely determined by the competence factor of the layer: 
the more deviant the competence factor from 1, the 
bigger 6 (Fig. 6). 0 is equal to ~ in all layers if they are 
parallel to any of the following 'eigen' directions of the 
bulk flow: two bulk ISA, B1 and B 2. Between these 
directions the variation of 0 in competent and incompe- 
tent layers presents an inverse relationship--when 0 in 
an incompetent layer is larger than ~, 0 in a competent 
layer will be smaller than ~ and vice versa (Figs. 4 and 5). 

The sense and rate of spin versus ~ is presented in Fig. 
7. It is readily seen that the curves fall into forward 
rotation (FR) and backward rotation (BR) sectors with 
BI and B E as their symmetric lines, respectively. For 
incompetent layers in the BR sector, both spin and the 
sense of rotation of the layers are backward with maxi- 
mum spin rate at B 2. In the FR sector layers rotate 
forward but the sense of spin is complicated: maximum 
forward spin is achieved at B1, but near two eigenvec- 
tors, the spin is backward. For competent layers, unless 
N = 0 spin is not necessarily of the same sense as the 
rotation of the layer. Around both B1 and B 2 spin is 
opposite to the sense of rotation of the layer. 

Variation o f  the internal vorticity 

The derivation of the instantaneous velocity gradient 
tensor L(t) is given in the Appendix. From L(t), all the 
flow parameters can be calculated (see Jiang 1994). The 
results are presented here. 

The spin o f  the instantaneous stretching axes (ISA ) 

The variation of the orientation of ISA in an indi- 
vidual layer (0, Fig. 3a) vs the instantaneous orientation 

The variation of the internal vorticity is presented in 
Fig. 8. For incompetent layers, in the BR sector the 
sense of shear is always sympathetic to the bulk sense of 
shear with maximum shear strain rate at B 2. In the FR 
sector a reverse sense of shear may or may not occur 
depending on the bulk kinematic vorticity number and 
how incompetent the layer is. The higher the bulk 
kinematic vorticity number, i.e. the stronger the bulk 
non-coaxiality, the less likely is reverse shear, whereas 
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the more incompetent the layer (higher N), the more 
likely is reverse shear. For example for Wk = 0, all 
incompetent layers undergo reverse shear, but for Wk = 
2/3, only layers with N > 1.2 undergo reverse shear, and 
for Wk = 1, only layers with N > 1.4 undergo reverse 
shear. For competent layers, the sense of shear is mostly 
sympathetic, but a strong reverse sense of shear occurs 
in the BR sector with the peak at Bz. 

Variation of W'k 

The variation of W~ is presented in Fig. 9. All flow 
regimes can occur in both incompetent and competent 
layers depending on the bulk kinematic vorticity num- 
ber, competence factor and instantaneous orientation of 
the layer. When the bulk kinematic vorticity is relatively 
low (0 and 1/3), flow in incompetent layers is mostly sub- 
simple shear. As bulk kinematic vorticity increases (2/3 
and 1) super-simple shear can occur in the whole incom- 
petent layer. Flows in competent layers strongly tend to 
be super-simple shear. Peak W~, is reached as the layer is 
near Bt or B2. 

Comparison with lshii' s results 

The results as presented in Figs. 5-9 generally agree 
with Ishii's figs. 3 and 5-7 (Ishii 1992) but are much more 
detailed. Most importantly, they clearly reveal the re- 
lationships between the 'eigen' directions of the bulk 
flow and the peaks of the curves. It is also evident that 
the introduction of a single quantity--the competence 
factor N--is advantageous over using two quantities-- 
the viscosity ratio and thickness ratio. 

DISCUSSION AND GEOLOGICAL 
IMPLICATIONS 

Flow of rocks: heterogeneous and non-steady 

continua and hence the principles of continuum mech- 
anics can often be applied, it should be borne in mind 
that rocks are far more heterogeneous and complex than 
any continua so far studied in continuum mechanics. In 
continuum mechanics theory, the decomposition of the 
velocity into three components (translation, pure defor- 
mation and vorticity) is often sufficient (Truesdell 1954, 
1965, Sedov 1971). To describe flow of rocks however, 
the vorticity itself must be partitioned into two com- 
ponents and non-coaxiality is introduced as a concept 
different from rotation. The inescapable heterogeneity 
of rocks leads to uneven and time-dependent distri- 
bution of the velocity gradient tensor (Jiang 1994) and 
therefore to flow variations in space and time. 

Figures 5-9 explicitly show flow variation in space 
(from layer to layer, varying N) and with time (as q~ 
changes) even though the bulk flow is set constant (pure 
shear, sub-simple shear or simple shear). 

Flow parameters in competent and incompetent 
layers have roughly inverse relationships. Reverse sense 
of non-coaxiality can occur in the same layer at different 
times or in different layers at the same time (Figs. 8 and 
9). The suggestion by Lister & Williams (1983) that 
competent layers possibly have flowed more coaxially 
only holds for layers with N = 0. Generally, flow in 
competent layers can be highly non-coaxial at certain 
orientations (Fig. 9). The observation that in natural 
deformation competent domains usually have less finite 
strain than incompetent domains is either a result that 
flow in competent domains is less strong than in incom- 
petent domains or that the finite strain in competent 
domains is accumulated less efficiently due to higher 
flow non-coaxiality or both. 

Using flow parameters in Figs. 5 and 9, flow in a layer 
with N = 2 in a bulk flow field with Wk = 2/3 is 
constructed as an example to show how flow regime in a 
layer varies with time (Fig. 10). Flow in the layer can be 
sub-simple shear (a,b,c,h,m), simple shear (d,f,j,l), 
super-simple shear (e,k) and pure shear (g,i) depending 
on the instantaneous orientation of the layer. Therefore 
super-simple shear may be possible not only on grain 
scales (Means 1981, Talbot & Jackson 1987) or in the 
vicinities of deformable porphyroclasts (Simpson & De 
Paor 1993), but can also occur throughout a whole layer. 

In addition to the competence factor of a layer Nbeing 
time-dependent, the kinematic vorticity number for the 
bulk flow, Wk, may also be time-dependent due to bulk 
flow scale vorticity distribution and partitioning. There- 
fore the flow of a layer at any instant can be expressed as 
the following function: 

flow of a layer = f(Wk, N, q~). (14) 

Equation (14) explicitly shows the significant hetero- 
geneity and non-steadiness of natural flows. 

Structures related to the stretching histories of material 
lines 

Although rocks can, to some approximation (see In a progressive deformation, ISA spinning and flow 
Lister & Williams 1983, appendix I), be viewed as regime variation give rise to much more complicated 

SG ]6:$-H 
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Fig. 10. Flow in a layer with N = 2.0 in a bulk flow field with Wk = :~ constructed from data in Figs. 6 and 10. A variety of 
flow regimes can occur. See text for details. 

stretching and rotation histories of material lines than 
those in non-spinning steady flow situations (Fig. 11). 
Because of ISA spinning, in a single deformation there 
exist not only material lines that,  having undergone 
shortening in the past, will become extended in the 
future (se in Fig. 11a) (e.g. boudinaged folds), but also 
material lines that, having been extended in the past, 
will become shortened in the future (es in Fig. 11a) (e.g. 
folded boudins). The development of kink-band and 
shear-band cleavage in shear zones may not only be 
attributed to increasing strain and associated fabric build 
up and hardening (e.g. Platt & Vissers 1980, Gapais & 
White 1982) but may also result from the spinning of the 
ISA with respect to the foliation (see also Passchier 
1991b). Shortened or folded boudins need not be a result 
of multi-deformational events or volume change (Von 
Brunn & Talbot 1986, Passchier 1990, Hanmer  & Pass- 
chier 1991). Similarly the successive development of 
folds in shear zones (Platt 1983, Ghosh & Sengupta 
1984, 1987, Hudleston 1989) can be easily interpreted as 

being due to the spinning of the ISA with respect to the 
fold plane. 

Structures related to the rotation histories of  material 
lines--a precautionary note on shear-sense indicators 

As outlined earlier, material lines rotate differently in 
different flow regimes. The spinning of ISA and vari- 
ation of flow regime lead to complex rotational histories 
of material lines: lines previously rotated forward may 
rotate backward (FB) and vice versa (BF) (Fig. l lb ) .  
Flow regime variation may change the relative rotation 
rate or even sense of rotation between porphyroclasts 
and foliation. For  example, when a relatively rigid 
porphyroclast with an axial ratio more than a critical 
value undergoes flow variation from simple shear to sub- 
simple shear, the rotation rate will certainly change, and 
if its long axis lies within the backward rotation sector, it 
will rotate backward. For  certain N and q~, the reversal 
of the internal vorticity (Fig. 8) will reverse the sense of 

i ; 

spin A' ~ ~ : .  
.~ } ~ A 

r. / 
/ ,t- ( b )  

( a )  

Fig. 11. Possible material line stretching (a) and rotation (b) histories as a result of ISA spinning and flow regime Variation. 
(ee: Extended lines; se: shortened then extended lines; ss: shortened lines; es: extended then shortened lines; FF: forward 
rotation of lines; FB: forward then backward rotation of lines; BF: backward then forward rotation of lines; BB: backward 

rotation of lines.) 
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rotation of the porphyroclast. Any of these factors may 
contribute to the observed double rotation of porphyr- 
oclasts (Dixon 1976, Simpson & De Paor 1993). 

Asymmetry of structures, especially porphyroclasts, 
have been used as shear-sense indicators (for a complete 
review see Hanmer  & Passchier, 1991). As most struc- 
tures, shear-sense indicators usually record a local and 
incremental strain history. They can only reflect the local 
kinematics of a period prior to the 'fossilization' of the 
structures. Since sense of shear varies in space and time 
in layered rocks and is expected to do so in rocks with 
any compositional and structural heterogeneities, devel- 
opment of inconsistent shear-sense indicators is not at all 
surprising in such rocks. To the contrary, consistence of 
shear-sense indicators in some areas may instead be 
anomalous special cases where relatively simple and 
homogeneous deformation has occurred (e.g. when N = 
1), the assumption of which often creates unnecessary 
dilemmas and cannot in general be justified. The estab- 
lishment of bulk kinematics relies on detailed structural 
analysis on different scales and is not always possible. 
For some complex metamorphic terrains, bulk kinema- 
tics may be as indeterminable as the stratigraphy. 
Directly relating a shear-sense indicator to bulk kinema- 
tics is dangerous. 

Fabrics and flow 'eigen' directions 

Fabrics in rocks represent incomplete memories of 
their past experience. They are developed through a 
variety of physicochemical processes. Structural geolo- 
gists tend to consider fabrics in terms of strain and flow 
'eigen' directions, e.g. to equate foliations to the XY 
planes of the finite strain (but see however, Williams 
1972, 1977, Hobbs etal. 1982). Some fabric elements are 
thought to be instantaneous strain sensitive, such as 
quartz preferred orientation fabrics (Lister & Hobbs 
1980), steady-state foliations (Means t981), symmetry 
axes of rigid objects blocked in the flow (Ghosh & 
Ramberg 1976, Passchier 1987b). These fabric elements 
reflect the influence of the flow immediately prior to 
fossilization of the fabric (Lister & Hobbs 1980). As has 
been shown in this study, no flow 'eigen' directions 
including ISA are expected to be fixed in a progressive 
deformation. In incompetent layers with N = 2. spin can 
be twice the bulk shear strain rate and in competent 
layers, it can be more than 10 times (Fig. 7). It would be 
difficult for any fabric element materially defined to 
keep track of the elusive ISA. Even if some fabric 
elements do track the ISA, their orientations only indi- 
cate the fossilizing stages of the deformation. In layered 
rocks, there will be an uncertainty of ± 26 over which 
the ISA might have spinned. 
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APPENDIX 
DERIVATION OF L(t) 

For some simple flows, the instantaneous velocity gradient tensor 
(L) is straightforward or can he easily determined. Integrating L gives 
the deformation gradient tensor F (Passchier 1988a,b, Weijermars 
1991). For some complex flow situations, like those studied in this 
paper, the deformation gradient tensor may be relatively easier to 
derive. A reverse procedure is thus used: first derive F and then derive 
L from F by using the relations given by Truesdell (1965): 

L(t) = F(t). F-l(t) (A1) 

o r  

L(t) = l:m ~'r(t), (A2) 

where FT(t ) means the incremental deformation gradient from time r 
to time t. 

For convenience of mathematical derivation, an external frame is 
established with x I parallel to A t. In such a frame, L(t) is the sum of 
two components: L~--a component contributed by the pure shear 
component of the bulk flow, and Le--a component contributed by the 
simple shear component of the bulk flow. 

Figure A1 shows a layer with competence factor N originally at an 
arbitrary angle 00 with respect to x2 (00-configuration, Fig. Ala)  
incrementally deformed into the 0-configuration (Fig. A1b). g'0 and ~/, 
are defined so that tan(~0) = Ntan(00) and tan(ip) = Ntan(0 ). Figures 
Al(c) & (d) are Mohr circles of bulk shear flow and bulk simple shear 
flow, respectively, from which resolved shear strain rate parallel to the 
layer, layer-parallel stretching and angular velocity of the layer can be 

X2 

, x ~ )  

X 2 

(b) 

B' (x~, X 2) 

Xl 

(a) /~I 

(o 

~2 J/I~I 

Xl 

Fig. A1. (a) A layer with competence factor N in a pure shear or simple shear flow field. (b) After an incremental 
deformation, OABC becomes OA'B 'C ' .  (c) & (d) Mohr circles of pure shear and simple shear, respectively, from which the 

layer-parallel (OC) stretching rate and resolved shear strain rate parallel to the layer can he obtained. 
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easily obtained (see Bobyarchik 1986, Passchier 1988, 1991a, Simpson 
& De Paor 1993). 

Derivation of L, 

An arbitrary point B with co-ordinates (x~,x~) can thus be expressed 
as: 

xl~ = OC sin00 + OA cos(00 - ~P0) 

x~ = OC c o s 0 0 -  OA s in0p0-  ~'0) 

or in matrix form: 

cos@~ -s in(O o -  ~0o) IOAI 

After an incremental deformation, B become B'(.r I ,~  ). Similarly, 
we have: 

[cosO IOA' " 
(A4) 

- s i n ( 0  - ~p)] 

Suppose 2~/2 is the incremental stretch of the material line OC, i.e. : 

OC'  = A~/20C. (A5) 

Obviously we have: 

lim 2~/2= I. 

For isochoric deformation, we have: 

OA'  = OAJt~l/2 cos~0/cosq,. (A6) 

Incorporating (A3), (AS), (A6) into (A4) and rearranging, we obtain 
the incremental deformation tensor from @) configuration to 0 con- 
figuration: 

F/~/2 sinO ~.;t/2 coslPo (cos0 4- UsinO tanO) ] 
F~,,(O) = [2,~/2 cos0 _j.~/2 COSq'o sin0 (1 - N) ] 

'sin(tPo- ~Po) c o s ( 0 o -  lPo).] 
cos~po cos~Po 1. 

c°SOo sin0o ] (A7) 

cos~0o cos~P0 a 
According to equatmn (A2), the instantaneous velocity gradient 
tensor in bulk pure sheaL expressed in terms of 0,  L,.(0) is: 

L,(q)) lim "~ = F¢,,(0). (AS) 

From Fig. Al(c) ,  it is readily seen that: 

d)Y 2 dO 
lim ~ = e(O) = - /  cos20, = k sin20. 

,v,,~q dt 

LA0 ) can be obtained. 

Derivation of I, v 

In the case of bulk simple Shear, if the O = 0 configuration is chosen 
as the reference, we have: 

xl : x~ c°s0  cos (q - ~') + tan0 x~ 
cos~ 

. r~, costp sin (q - ~0) 
X2 = X2 -- - I COSlfl 

or in matrix form: 

COSt]) . . . .  

eostfl 

After Simplification. the deformation gradient tensor from the 
0o-configuration to the 0:configurati0n is: 

i '%' .4- (1 - N) cos20 talO . 
F°(O) = I -0 .5  (1 - N) sin2~ 

(A9) 

If the 0o-configuration is chosen as the reference, the transform- 
ation matrix from the 00-configuration to the 0-configuration is (see 
Jiang in press) F~71 (00). Therefore the deformation gradient tensor for 
the incremental deformation from the @)-configuration to the 0- 
confguration is: 

F~,(q~) = FI,(0)F 0 t(q)O). (AI0) 

Differentiating C A 10) and incorporating d(p/dt = ~ cos20 (from Fig. 
Ald) ,  the instantaneous velocity gradient tensor in bulk simple shear 
expressed in terms of 0 can be obtained from: 

Therefore the instantaneous velocity gradient tensor L(t), being the 
sum of the pure shear and simple shear components is: 

l,(q~) = Lc(q~) + l,r(cp). (AI2) 


